Best Approximation Using a Peak Norm

EITAN LAPIDOT* AND JAMES T. LEWIS

Department of Mathematics, The University of Rhode Island, Kingston, Rhode Island 02881

Communicated by Oved Shisha

Received July 1, 1989; revised January 1, 1990

A family of norms $\|g\|^{(\alpha)}$, $0 < \alpha < 1$, which combine features of both the uniform and the L^1 norms is defined. Best approximation of a continuous function from an *n*-dimensional subspace is characterized and (in case of a *T*-subspace) a uniqueness theorem is proven. The family, as well as the best approximation, is continuous in α . In particular, when α tends to zero or one, we get the uniform or the L^1 case, respectively. \square 1991 Academic Press, Inc.

1. INTRODUCTION

The uniform (L^{∞}) , Chebyshev) norm $\max_{0 \le x \le 1} |g(x)|$ measures the largest deviation of the continuous function g from 0, whereas the L^1 norm $\int_0^1 |g(x)| dx$ measures the average deviation. We use a class of norms, denoted by $||g||^{(\alpha)}$ where $0 < \alpha < 1$, which combine features of these two classical norms. Our $||g||^{(\alpha)}$, defined in Section 2, measures the average of the largest function values |g(x)|. As $\alpha \to 1^-$, $||g||^{(\alpha)}$ converges to the L^1 norm of g; as $\alpha \to 0^+$, $||g||^{(\alpha)}$ converges to the uniform norm of g. Corresponding results hold for best approximations to a given continuous function f.

Our main result is an L^1 -type characterization theorem for best approximation. Interestingly, we obtain uniqueness of the best approximation from a Chebyshev system by an argument which uses both L^1 and uniform norm techniques.

Our work is somewhat in the spirit of [5]. There L^q -type gauges were introduced and a theory developed for q = 1 reminiscent of best uniform approximation.

^{*} Permanent address: 44A Eder Street. Haifa 34752, Israel.

2. PRELIMINARIES AND AN EXAMPLE

For each α with $0 < \alpha \le 1$ we define the *peak norm* or α -norm $\|\cdot\|^{(\alpha)}$ on the space C[0, 1] of real continuous functions g on [0, 1] by

$$\|g\|^{(\alpha)} = \frac{1}{\alpha} \sup_{m(A) = \alpha} \int_{A} |g|,$$

where the supremum is taken over all subsets A of [0, 1] with (Lebesgue) measure $m(A) = \alpha$. It is easy to verify that $\|\cdot\|^{(\alpha)}$ is in fact a norm on C[0, 1]. Of course when $\alpha = 1$, $\|g\|^{(\alpha)}$ is equal to the L^1 norm of g. For each $0 < \alpha < 1$ our $\|\cdot\|^{(\alpha)}$ is topologically equivalent to the L^1 norm on C[0, 1], since $\alpha \|g\|^{(\alpha)} \leq \int_0^1 |g(x)| dx \leq \|g\|^{(\alpha)}$. Also $\|\cdot\|^{(\alpha)}$ is a monotone norm; i.e., if $|g(x)| \leq |f(x)|$, $0 \leq x \leq 1$, then $\|g\|^{(\alpha)} \leq \|f\|^{(\alpha)}$. Finally note that $\|\cdot\|^{(\alpha)}$ is not strictly convex; this is easily shown by an example.

More generally, for $1 \leq q < \infty$ we could define

$$\|g\|_{q}^{(\alpha)} = \left[\frac{1}{\alpha} \sup_{m(A)=\alpha} \int_{A} |g|^{q}\right]^{1/q}$$

and obtain results similar to the case q = 1 studied in this paper.

Our first result concerns existence and structure of sets A' for which $m(A') = \alpha$ and $(1/\alpha) \int_{A'} |g| = ||g||^{(\alpha)}$. Intuitively, A' is a set of x-values (of measure α) corresponding to the largest |g(x)| values. Throughout this paper we will denote the set difference of two sets by $A \setminus B = A \cap (B^C)$ and the symmetric difference by $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

We use the following notations: Let g be a continuous function on [0, 1]. For h real, set

$$A_h(g) = \{x \in [0, 1] : |g(x)| \ge h\}$$
$$h_0(g, \alpha) = \inf\{h : m(A_h(g)) \le \alpha\}$$

and

$$A_{h_0}^+(g) = \{ x \in [0, 1] : |g(x)| > h_0 \}.$$

LEMMA 1. Let $0 < \alpha < 1$ and g be a continuous function on [0, 1], $A_h = A_h(g)$, $h_0 = h_0(g, \alpha)$, and $A_{h_0}^+ = A_{h_0}^+(g)$. Then

(1) $m(A_{h_0}^+) \leq \alpha \leq m(A_{h_0}).$

(2) There exists a set $A' \subseteq [0, 1]$ with $m(A') = \alpha$ and $(1/\alpha) \int_{A'} |g| = (1/\alpha) \sup_{m(A) = \alpha} \int_{A} |g| = ||g||^{(\alpha)}$. In fact any set A' with $A_{h_0}^+ \subseteq A' \subseteq A_{h_0}$ and $m(A') = \alpha$ is such that $(1/\alpha) \int_{A'} |g| = ||g||^{(\alpha)}$.

(3) Conversely, if $A' \subseteq [0, 1]$ and $m(A') = \alpha$ and if $(1/\alpha) \int_{A'} |g| = ||g||^{(\alpha)}$ then (except possibly for a set of measure 0) $A_{h_0}^+ \subseteq A' \subseteq A_{h_0}$.

The proof of Lemma 1 is straightforward and will be omitted.

We define a norming set for g (using $\|\cdot\|^{(\alpha)}$) to be any set A' with $m(A') = \alpha$ and $A_{h_0}^+ \subseteq A' \subseteq A_{h_0}$ (where $h_0, A_{h_0}, A_{h_0}^+$ are defined in the statement of Lemma 1). If $m(A_{h_0}^+) = \alpha$ or if $m(A_{h_0}) = \alpha$ then g has a unique (up to a set of measure 0) norming set. If $m(A_{h_0}^+) < \alpha < m(A_{h_0})$ then g does not have a unique norming set, since any set of the form $A' = A_{h_0}^+ \cup E$, where $E \subseteq \{x \in [0, 1] : |g(x)| = h_0\}$ and $m(E) = \alpha - m(A_{h_0}^+)$, is a norming set for g. Possible nonuniqueness of norming sets is a complicating feature in the analysis below. Finally, note that for each norming set A' for g,

$$h_0 = \inf_{x \in \mathcal{A}'} |g(x)|.$$

This follows from the continuity of g.

For the linearly independent continuous functions $u_1, ..., u_n$ on [0, 1], set $U = \operatorname{span}\{u_1, ..., u_n\} =$ the *n*-dimensional subspace spanned by $u_1, ..., u_n$. Then u^* in U is a best peak norm (or best α -norm) approximation to f in C[0, 1] from U if $||f - u^*||^{(\alpha)} \leq ||f - u||^{(\alpha)}$ for all u in U. Existence of a best peak norm approximation to f from the finite dimensional subspace U is guaranteed by a standard existence theorem, cf. [2, p. 20].

We next present an example.

EXAMPLE. Let $0 < \alpha < 1$. We seek a best α -norm approximation to $f(x) = (x - 1/2)^2$, $0 \le x \le 1$, using $c_1 + c_2 x$. Motivated by symmetry we try $c_2^* = 0$ and

$$c_1^* = \left[f\left(\frac{\alpha}{4}\right) + f\left(\frac{1}{2} - \frac{\alpha}{4}\right) \right] / 2 = \left[\left(\frac{\alpha}{4} - \frac{1}{2}\right)^2 + \left(-\frac{\alpha}{4}\right)^2 \right] / 2$$
$$= \left[(\alpha - 2)^2 + \alpha^2 \right] / 32.$$

Notice $A' = [0, \alpha/4] \cup [1/2 - \alpha/4, 1/2 + \alpha/4] \cup [1 - \alpha/4, 1]$ is a norming set for $f(x) - (c_1^* + c_2^* x)$.

It follows from Theorem 1 in Section 3 below that $u^*(x) = c_1^* + c_2^* x$ is in fact a best α -norm approximation.

Notice $\lim_{\alpha \to 0^+} [f(x) - (c_1^* + c_2^* x)] = (x - 1/2)^2 - 1/8$, a multiple of the Chebyshev polynomial of the first kind $T_2(t) = 2t^2 - 1$, $-1 \le t \le 1$, transformed to $0 \le x \le 1$ by the change of variable t = -1 + 2x. Also $\lim_{\alpha \to 1^-} [f(x) - (c_1^* + c_2^* x)] = (x - 1/2)^2 - 1/16$, a multiple of the Chebyshev polynomial of the second kind $U_2(t) = 4t^2 - 1$, $-1 \le t \le 1$, transformed to $0 \le x \le 1$. These results are instances of Theorem 4 below.

3. MAIN RESULTS

The next theorem is our main result. When $\alpha = 1$ the criterion (3.1) reduces to that of a well-known characterization theorem for L^1 approximation on [0, 1], cf. [4, p. 104].

THEOREM 1 (L^1 -Type Characterization Theorem). Let $0 < \alpha < 1$, f, $u_1, ..., u_n$ continuous on [0, 1], and $U = \text{span}\{u_1, ..., u_n\}$. Let $u^* \in U$ and set $Z = \{x \in [0, 1] : f(x) - u^*(x) = 0\}$, the zero set of $f - u^*$. Then u^* is a best peak norm approximation to f from U if and only if for each u in U there exists a norming set A(u) for $f - u^*$ such that

$$\int_{A(u)} u \operatorname{sgn}(f - u^*) \leq \int_{Z \cap A(u)} |u|.$$
(3.1)

Proof. The proof is presented in Section 5.

Remarks. (1) It can be shown that Theorem 1 remains valid if absolute value signs are placed around the integral on the left-hand side of (3.1). Hence if $h_0 > 0$ then $Z \cap A(u) = \phi$ and (3.1) becomes

$$\int_{A(u)} u \operatorname{sgn}(f - u^*) = 0.$$

(2) If u^* is a best L^1 approximation to f on a norming set A for $f-u^*$ (i.e., if $\int_A |f-u^*| \leq \int_A |f-u|$ for all u in U) then u^* is a best peak norm approximation to f. If $f-u^*$ has a unique (up to a set of measure 0) norming set A, then the converse is true: if u^* is a best peak norm approximation to f then u^* is a best L^1 approximation to f on A. These facts follow from Theorem 1 and from a characterization theorem for L^1 approximation on the set A.

(3) (a) If u^* is a best α -norm approximation to f with $h_0 = \inf_{x \in A} |f(x) - u^*(x)| = 0$ (A is a norming set) then u^* is also a best β -approximation to f for each β with $\alpha < \beta \le 1$. This is a direct consequence of Theorem 1 since now $f(x) - u^*(x) = 0$ for all x in $[0, 1] \setminus A$. This can also be shown without using Theorem 1 as follows. For any u in U,

$$\|f - u^*\|^{(\beta)} = \frac{\alpha}{\beta} \|f - u^*\|^{(\alpha)} \leq \frac{\alpha}{\beta} \|f - u\|^{(\alpha)} \leq \|f - u\|^{(\beta)}.$$

(b) If u^* is a best L^1 approximation to f on [0, 1] and if $m\{x: |f(x) - u^*(x)| > 0\} \le \alpha < 1$ then it does *not* follow that u^* is a best α -norm approximation to f. This is easily seen by example.

Our next theorem gives intuitively appealing "uniform approximation type" properties of a best peak norm approximation. First, the set $\{u_1, ..., u_n\}$ of continuous functions on [0, 1] is a *Chebyshev system* on [0, 1] if each linear combination $c_1u_1 + \cdots + c_nu_n$ has fewer than *n* zeros in [0, 1] unless $c_1 = 0, ..., c_n = 0$.

THEOREM 2. Let f be continuous on [0, 1] and $\{u_1, ..., u_n\}$ a Chebyshev system of continuous functions on [0, 1]. Let $0 < \alpha < 1$ and let u^* be a best α -norm approximation to f from $U = \text{span}\{u_1, ..., u_n\}$. Set

$$A_{h} = A_{h}(f - u^{*})$$
$$h_{0} = \inf_{x \in A} |f(x) - u^{*}(u)|,$$

where A is any norming set for $f - u^*$. If $h_0 > 0$ then there are closed sets $A^{(1)}, ..., A^{(m)}$ with $m \ge n+1$ such that:

(1) $A_{h_0} = \bigcup_{i=1}^m A^{(i)}$.

(2) $A^{(1)} < A^{(2)} < \cdots < A^{(m)}$ and, in fact, there exists d > 0 such that $\min A^{(i+1)} - \max A^{(i)} \ge d$, i = 1, ..., m - 1.

(3) sgn $A^{(i+1)} = -$ sgn $A^{(i)}$, i = 1, ..., m-1, where

$$\operatorname{sgn} A^{(i)} = \begin{cases} +1 & \text{if } f(x) - u^*(x) \ge h_0 \text{ for all } x \text{ in } A^{(i)} \\ -1 & \text{if } f(x) - u^*(x) \le -h_0 \text{ for all } x \text{ in } A^{(i)}. \end{cases}$$

(4) There exists a subsequence $A^{(i_1)}$, $A^{(i_2)}$, ..., $A^{(i_{m'})}$ of $A^{(1)}$, ..., $A^{(m)}$ with $m' \ge n+1$, sgn $A^{(i_{j+1})} = -\text{sgn } A^{(i_j)}$, j = 1, ..., m'-1, and $m(A^{(i_j)}) > 0$, j = 1, ..., m'.

(5) Set $t_i = \min A^{(i)}$, i = 2, ..., m, and $s_i = \max A^{(i)}$, i = 1, ..., m - 1. Then

(a)
$$|f(t_i) - u^*(t_i)| = h_0$$
, $i = 2, ..., m$. $|f(s_i) - u^*(s_i)| = h_0$, $i = 1, ..., m - 1$.

(b) u^* is the unique best uniform approximation on the finite point set $\{s_1, t_2, s_2, ..., t_{m-1}, s_{m-1}, t_m\}$ and also on any finite point set of the form $(s_1, r_2, ..., r_{m-1}, t_m)$ where $r_i \in \{t_i, s_i\}$, i = 2, ..., m-1.

Proof. By the uniform continuity of $f - u^*$ on [0, 1], there exists d > 0 such that $|(f - u^*)(x) - (f - u^*)(y)| < 2h_0$ if $|x - y| \leq d$. Partition [0, 1] into a finite number of subintervals I of length $\leq d$. Label I as a +sub-interval if $f(x) - u^*(x) \geq h_0$ for some x in I, as a -subinterval if $f(x) - u^*(x) \leq -h_0$ for some x in I. (I may be neither + nor - but it cannot be both + and -.) Starting at the left end of [0, 1], form $A^{(1)}$ by

intersecting A_{h_0} with successive subintervals *I*; stop when a subinterval of opposite sign is encountered. Then from $A^{(2)}$ using subintervals of opposite sign from $A^{(1)}$. Continue until all subintervals have been used. Then each $A^{(i)}$ is closed (since A_{h_0} is closed) and (1), (2), (3) are clear, except for $m \ge n+1$. We prove this by contradiction; assume $m \le n$. If m=1, then $\operatorname{sgn}(f-u^*)$ does not change on A_{h_0} . There exists *u* in *U* with u(x) > 0 for all *x* in [0, 1] (because $\{u_1, ..., u_n\}$ is a Chebyshev system). Using either *u* or -u we obtain a contradiction from $A(u) \subseteq A_{h_0}$ and Theorem 1 $(Z \cap A(u) = \phi$ there since $h_0 > 0$). If $2 \le m \le n$, let $x_1, ..., x_{m-1}$ be points satisfying

$$A^{(i)} < x_i < A^{(i+1)}, \quad i = 1, ..., m-1.$$

Then there exists u in U which changes sign precisely at $x_1, ..., x_{m-1}$. Again using either u or -u we obtain a contradiction from Theorem 1. Hence $m \ge n+1$. Part (4) is proved similarly.

Part (5(a)) follows from the closedness of $A^{(i)}$ and the continuity of $f-u^*$. Part (5(b)) is an immediate consequence of the alternation theorem and uniqueness theorem for best uniform approximation on a finite point set, cf. [2, p. 75; 6, Chap. 3].

In the example of Section 2, $A^{(1)} = [0, \alpha/4]$,

$$A^{(2)} = [1/2 - \alpha/4, 1/2 + \alpha/4], A^{(3)} = [1 - \alpha/4, 1].$$

The next theorem generalizes a classical uniqueness theorem of Jackson for L^1 approximation.

THEOREM 3 (Uniqueness). Let $0 < \alpha < 1$, f continuous on [0, 1], $\{u_1, ..., u_n\}$ a Chebyshev system of continuous functions on [0, 1], and $U = \text{span}\{u_1, ..., u_n\}$. Then the best α -norm approximation to f from U is unique.

Proof. Assume p_1 and p_2 are two different best α -norm approximations to f from U and set $p_0 = (p_1 + p_2)/2$. Let A be a norming set for $f - p_0$. Then

$$\|f - p_0\|^{(\alpha)} = \frac{1}{\alpha} \int_A |f - p_0| = \frac{1}{\alpha} \int_A |f - (p_1 + p_2)/2|$$

$$\leq \left[\frac{1}{\alpha} \int_A |f - p_1| + \frac{1}{\alpha} \int_A |f - p_2| \right] / 2$$

$$\leq \left[\|f - p_1\|^{(\alpha)} + \|f - p_2\|^{(\alpha)} \right] / 2.$$
(3.2)

Thus p_0 is also a best α -norm approximation to f, both \leq are =, and A

is (up to a set of measure 0) a norming set for $f - p_1$ and for $f - p_2$. The fact that inequality in (3.2) is equality implies

$$|(f(x) - p_1(x)) + (f(x) - p_2(x))| = |f(x) - p_1(x)| + |f(x) - p_2(x)|$$
(3.3)

almost everywhere on A. Now for j = 0, 1, 2 define $A_{h^{(j)}} = A_{h^{(j)}}(f - p_i)$, $h_0^{(j)} = h_0(f - p_j, \alpha), \ A_{h_0^{(j)}}^+ = A_{h_0^{(j)}}^+(f - p_j).$

Let A' be a subset of A of measure α on which (3.3) holds and which is a norming set for $f - p_1$ and for $f - p_2$. Then

$$h_{0}^{(0)} = \inf_{x \in A'} |f(x) - p_{0}(x)|$$

= $\frac{1}{2} \inf_{x \in A'} [|f(x) - p_{1}(x)| + |f(x) - p_{2}(x)|]$
 $\geqslant \frac{1}{2} [\inf_{x \in A'} |f(x) - p_{1}(x)| + \inf_{x \in A'} |f(x) - p_{2}(x)|]$
= $\frac{1}{2} [h_{0}^{(1)} + h_{0}^{(2)}].$ (3.4)

If $h_0^{(0)} = 0$, then $h_0^{(1)} = 0 = h_0^{(2)}$ also and so $p_1(x) = f(x) = p_2(x)$ for all x in $[0, 1] \setminus A'$. This is impossible since $\{u_1, ..., u_n\}$ is a Chebyshev system. Hence $h_0^{(0)} > 0$. Let t_i , s_i be defined as in part (5) of Theorem 2, with p_0 replacing u^* there and $h_0^{(0)}$ replacing h_0 there. Since $A_{h_0^{(1)}}^+ \subseteq A' \subseteq A_{h_0^{(0)}}^+$, every interval of the form $(s_1, s_1 + \varepsilon)$ with $\varepsilon > 0$ contains points y not in $\mathring{A}_{h_{0}^{(1)}}^{+}$. Let y_1, y_2, \dots be a sequence of such points with $\lim_{i \to \infty} y_i = s_1$. Then since $|f(y_i) - p_1(y_i)| = h_0^{(1)}$ we have

$$|f(s_1) - p_1(s_1)| = \lim_{j \to \infty} |f(y_j) - p_1(y_j)| \le h_0^{(1)}.$$
(3.5)

Similarly, $|f(s_1) - p_2(s_1)| \le h_0^{(2)}$. From (3.4) one of $h_0^{(1)}$, $h_0^{(2)}$ is $\le h_0^{(0)}$; say $h_0^{(1)} \le h_0^{(0)}$. Then from (3.5), $|f(s_1) - p_1(s_1)| \le h_0^{(1)} \le h_0^{(0)}$. In a similar way to that in which (3.5) was obtained, we can get $|f(s_i) - p_1(s_i)| \le h_0^{(1)} \le h_0^{(0)}$, i = 2, ..., m - 1, and $|f(t_m) - p_1(t_m)| \le h_0^{(1)} \le h_0^{(0)}$. Hence using the uniqueness part of (5(b)) of Theorem 2 we see $p_1 = p_0$. Also $p_2 = 2p_0 - p_1 = p_1$. This contradiction completes the proof.

4. Continuous Dependence on α

In this section we consider the dependence on α of a best α -norm approximation to f. We first state a lemma whose proof is straightforward and will be omitted.

LEMMA 2. Let g be a continuous function on [0, 1].

- (1) If $0 < \beta < \alpha \le 1$, then $||g||^{(\alpha)} \le ||g||^{(\beta)} \le (\alpha/\beta) ||g||^{(\alpha)}$.
- (2) If $0 < \alpha < 1$, then $\lim_{\beta \to \alpha} ||g||^{(\beta)} = ||g||^{(\alpha)}$.
- (3) (a) $\lim_{\beta \to 1^{-}} \|g\|^{(\beta)} = \int_{0}^{1} |g(x)| dx.$
 - (b) $\lim_{\beta \to 0^+} \|g\|^{(\beta)} = \max_{0 \le x \le 1} |g(x)|.$

THEOREM 4. Let f be continuous on [0, 1], $\{u_1, ..., u_n\}$ a Chebyshev system of continuous functions on [0, 1], and $U = \text{span}\{u_1, ..., u_n\}$. Let p_{α} (p_{β}) be the unique best α -norm (β -norm) approximation to f from U.

(1) If $0 < \beta < \alpha \leq 1$ then

$$\|f - p_{\alpha}\|^{(\alpha)} \leq \|f - p_{\beta}\|^{(\alpha)} \leq \|f - p_{\beta}\|^{(\beta)} \leq \|f - p_{\alpha}\|^{(\beta)} \leq \frac{\alpha}{\beta} \|f - p_{\alpha}\|^{(\alpha)}$$

- (2) If $0 < \alpha < 1$, then $\lim_{\beta \to \alpha} p_{\beta} = p_{\alpha}$.
- (3) (a) $\lim_{\beta \to 1^{-}} p_{\beta} = p_{1}$.

(b) $\lim_{\beta \to 0^+} p_{\beta} = p_0$, the best uniform approximation to f on [0, 1] from U.

Proof. The first inequality of (1) follows from the definition of p_{α} , the second inequality from Lemma 2, the third inequality from the definition of p_{β} , and the fourth inequality from Lemma 2. Parts (2), (3) are immediate consequence of the following (special case of a) result from [3].

Let X be a normed linear space with norm $\|\cdot\|$, V a finite dimensional subspace of X, f in X, and $\|\cdot\|_k$, k = 1, 2, ..., norms on X which satisfy $\lim_{k \to \infty} \|g\|_k = \|g\|$ for each g in X. If v^* is the unique best approximation to f from V using $\|\cdot\|$ and if v_k is a best approximation to f from V using $\|\cdot\|$ and if v_k is a best approximation to f from V using $\|\cdot\|_k$ then $\lim_{k \to \infty} v_k = v^*$.

5. PROOF OF THE CHARACTERIZATION THEOREM

In this section we present the proof of our main result. Our proof is patterned on the proof of the characterization theorem for L^1 approximation in [7, p. 67].

Proof of Theorem 1. (\Leftarrow) Let $\hat{u} \in U$ and let $A(\hat{u} - u^*)$ be a norming set for $f - u^*$ such that (3.1) holds with $u = \hat{u} - u^*$. Then

$$\begin{aligned} \alpha \|f - u^*\|^{(\alpha)} \\ &= \int_{A(\hat{u} - u^*)} |f - u^*| = \int_{A(\hat{u} - u^*)} (f - u^*) \operatorname{sgn}(f - u^*) \\ &= \int_{A(\hat{u} - u^*)} (f - \hat{u}) \operatorname{sgn}(f - u^*) + \int_{A(\hat{u} - u^*)} (\hat{u} - u^*) \operatorname{sgn}(f - u^*) \\ &\leqslant \int_{A(\hat{u} - u^*) \setminus Z} (f - u^*) \operatorname{sgn}(f - u^*) + \int_{A(\hat{u} - u^*) \cap Z} |\hat{u} - u^*| \quad \text{by (3.1)} \\ &\leqslant \int_{A(\hat{u} - u^*) \setminus Z} |f - \hat{u}| + \int_{A(\hat{u} - u^*) \cap Z} |\hat{u} - f| \quad \text{since } u^* = f \text{ on } Z \\ &= \int_{A(\hat{u} - u^*)} |f - \hat{u}| \leqslant \alpha \|f - \hat{u}\|^{(\alpha)}. \end{aligned}$$

Thus u^* is a best α -norm approximation to f from U.

 (\Rightarrow) We give a proof by contradiction. Let u^* in U be a best α -norm approximation to f from U and assume there exists u in U such that

$$\int_{A} u \operatorname{sgn}(f - u^{*}) - \int_{Z \cap A} |u| > 0$$
(5.1)

for every norming set A for $f - u^*$. We can scale u so that

$$\max_{0 \leqslant x \leqslant 1} |u(x)| = 1.$$

Set $A_{h_0}^+ = \{x \in [0, 1] : |f(x) - u^*(x)| > h_0\}$. Recall (from Section 2) $m(A_{h_0}^+) \le \alpha \le m(A_{h_0})$. The proof will be accomplished by four assertions.

1. There exists a > 0 such that

$$\int_{A} u \operatorname{sgn}(f - u^{*}) - \int_{Z \cap A} |u| \ge a$$
(5.2)

for every norming set A for $f - u^*$.

Proof of 1. If $m(A_{h_0}^+) = \alpha$ or if $\alpha = m(A_{h_0})$ then there is a unique norming set A (up to a set of measure 0) and so (5.2) follows from (5.1). Now consider $m(A_{h_0}^+) < \alpha < m(A_{h_0})$. Each norming set A can be written $A = A_{h_0}^+ \cup E_A$ where E_A is a subset of $A_{h_0} \setminus A_{h_0}^+ = \{x \in [0, 1] : |f(x) - u^*(x)| = h_0\}$ with $m(E_A) = \alpha - m(A_{h_0}^+)$ (see Section 2).

Case 1. $h_0 > 0$. Then $Z \cap A = \phi$ and (5.2) becomes

$$\int_{A} u \operatorname{sgn}(f - u^*) \ge a \tag{5.3}$$

for every norming set A for $f - u^*$. To show this, define

$$N_{t} = \{x \in A_{h_{0}} \setminus A_{h_{0}}^{+} : u(x) \operatorname{sgn}(f - u^{*})(x) \leq t\}$$

$$t_{0} = \sup\{t : m(N_{t}) \leq \alpha - m(A_{h_{0}}^{+})\}$$

$$N_{\bar{t}_{0}} = \{x \in A_{h_{0}} \setminus A_{h_{0}}^{+} : u(x) \operatorname{sgn}(f - u^{*})(x) < t_{0}\}.$$

Then the infinum of $\int_A u \operatorname{sgn}(f-u^*)$ is attained on a norming set $A = A_{h_0}^+ \cup N_{i_0} \cup N_A$ where N_A is any subset of $N_{i_0} \setminus N_{i_0}$ of measure $m(N_A) = \alpha - m(A_{h_0}^+) - m(N_{i_0})$. Since $u(x) \operatorname{sgn}(f-u^*)(x) = t_0$ on $N_{i_0} \setminus N_{i_0}$, $\int_A u \operatorname{sgn}(f-u^*)$ is the same for all such N_A ; this establishes (5.3).

Case 2. $h_0 = 0$. Here

$$\int_{A} u \operatorname{sgn}(f - u^*) - \int_{Z \cap A} |u| = \int_{A_0^+} u \operatorname{sgn}(f - u^*) - \int_{A \setminus A_0^+} |u|.$$

The first integral on the right hand side is independent of A. As an Case 1 we can show $\inf_{A} \left[-\int_{A \setminus A_{0}^{+}} |u| \right]$ is attained by a norming set A for $f - u^{*}$. This completes the proof of 1.

2. There exists an open set G of real numbers such that $A_{h_0} \subseteq G$ and an open set B such that $Z \subseteq B \subseteq G$, $m(B \setminus Z) < a/4$ and

$$\int_{\hat{A}\setminus B} u \operatorname{sgn}(f-u^*) - \int_{\hat{A}\cap B} |u| > \frac{a}{2}$$
(5.4)

whenever $A_{h_0}^+ \subseteq \hat{A} \subseteq G \cap [0, 1]$ and $m(\hat{A}) = \alpha$.

Proof of 2. If $h_0 > 0$ then $Z = \phi$ and we can take $B = \phi$. Then 2 follows from 1. If $h_0 = 0$ then $A_0 = [0, 1]$ and 2 follows from 1 and the two inequalities

$$\int_{\hat{A} \cap B} |u| < \int_{\hat{A} \cap Z} |u| + \frac{a}{4} \quad \text{and} \quad \left| \int_{\hat{A} \cap B} u \operatorname{sgn}(f - u^*) \right| < \frac{a}{4}$$

$$\left(\int_{\hat{A} \cap B} u \operatorname{sgn}(f - u^*) - \int_{\hat{A} \cap B} |u| \ge \int_{\hat{A}} u \operatorname{sgn}(f - u^*) - \int_{\hat{A} \cap B} u \operatorname{sgn}(f - u^*) - \int_{\hat{A} \cap Z} |u| - a/4 \ge a - a/4 - a/4 = a/2 \right).$$

3. There exists $\delta_0 > 0$ such that if $|\delta| \leq \delta_0$ and if $u_0 = u^* + \delta u$ and if \tilde{A}

is a norming set for $f - u_0$, then $\tilde{A} \subseteq G$ and there exists \hat{A} such that $A_{h_0}^+ \subseteq \hat{A} \subseteq (G \cap [0, 1]), m(\hat{A}) = \alpha, m(\tilde{A} \bigtriangleup \hat{A}) < a/8,$

$$\left|\int_{\tilde{A}\setminus B} u\,\operatorname{sgn}(f-u^*) - \int_{\hat{A}\setminus B} u\,\operatorname{sgn}(f-u^*)\right| \leq m(\tilde{A}\,\,\bigtriangleup\,\,\hat{A}) < \frac{a}{8} \qquad (5.5)$$

and

$$\left|\int_{\tilde{A} \cap B} |u| - \int_{\hat{A} \cap B} |u|\right| \leq m(\tilde{A} \bigtriangleup \hat{A}) < \frac{a}{8}.$$
(5.6)

The proof of 3 is straightforward and will be omitted.

4. There exist $\delta_1 > 0$ such that for $0 < \delta < \delta_1$ and $u_0 = u^* + \delta u$ we have $\|f - u_0\|^{(\alpha)} < \|f - u^*\|^{(\alpha)}$. (This contradicts the assumption that u^* is a best α -norm approximation to f from U and completes the proof of Theorem 1.)

Proof of 4. Let $A'' = [G \setminus B] \cap [0, 1]$. Then there exists M > 0 such that $|f(x) - u^*(x)| \ge M$ for all x in A''. (If $h_0 = 0$ then $G \supseteq A_{h_0} = [0, 1]$ and $A'' = G \cap B^c \cap [0, 1] = B^c \cap [0, 1]$ is closed. Since $|f(x) - u^*(x)| > 0$ on A'', then $\inf_{x \in A''} |f(x) - u^*(x)| > 0$. If $h_0 > 0$ then $|f(x) - u^*(x)| \ge h_0/2$ for x in G). Then for $0 < \delta < M$ we have, for $u_0 = u^* + \delta u$, that $\operatorname{sgn}(f - u^*) = \operatorname{sgn}(f - u_0)$ on A''.

Let $\delta_1 = \min{\{\delta_0, M\}}$, let $0 < \delta < \delta_1$, let \tilde{A} be a norming set for $f - u_0$, and let \hat{A} be given by 2. Then

$$\begin{aligned} \alpha \|f - u_0\|^{(\alpha)} &= \int_{\widetilde{A}} |f - u_0| \\ &= \int_{\widetilde{A} \cap B} |f - u_0| + \int_{\widetilde{A} \setminus B} |f - u_0| \\ &= \int_{\widetilde{A} \cap B} |f - u_0| + \int_{\widetilde{A} \setminus B} (f - u_0) \operatorname{sgn}(f - u_0) \\ &= \int_{\widetilde{A} \cap B} |f - u_0| + \int_{\widetilde{A} \setminus B} (f - u_0) \operatorname{sgn}(f - u^*) \\ &= \int_{\widetilde{A} \cap B} |f - u_0| + \int_{\widetilde{A} \setminus B} (f - u^*) \operatorname{sgn}(f - u^*) \\ &- \delta \int_{\widetilde{A} \setminus B} u \operatorname{sgn}(f - u^*) \end{aligned}$$

$$< \int_{\overline{A} \cap B} |f - u_0| + \int_{\overline{A} \setminus B} |f - u^*|$$

$$- \delta \left[\int_{\overline{A} \setminus B} u \operatorname{sgn}(f - u^*) - \frac{a}{8} \right] \quad \text{by (5.5),}$$

$$< \int_{\overline{A} \cap B} |f - u_0| + \int_{\overline{A} \setminus B} |f - u^*|$$

$$- \delta \left[\int_{\overline{A} \cap B} |u| + \frac{a}{2} - \frac{a}{8} \right] \quad \text{by (5.4),}$$

$$< \int_{\overline{A} \cap B} |f - u_0| + \int_{\overline{A} \cap B} |f - u^*|$$

$$- \delta \left[\int_{\overline{A} \cap B} |u| - \frac{a}{8} + \frac{a}{2} - \frac{a}{8} \right] \quad \text{by (5.6),}$$

$$< \int_{\overline{A} \cap B} |f - u^*| + \int_{\overline{A} \cap B} [|f - u_0| - |f - u^*| - \delta |u|] - \delta \frac{a}{4}$$

 $< \alpha ||f - u^*||^{(\alpha)}$ since the second integrand is ≤ 0

(since $\delta |u| = |-\delta u| = |(f-u_0) - (f-u^*)| \ge |f-u_0| - |f-u^*|$). This completes the proof of 4.

Remark. In his report the referee commented that the α -norm had been discussed in [1], defined by $||g||^{(\alpha)} = (1/\alpha) \int_0^{\alpha} |g^*(t)| dt$ where g^* is a decreasing rearrangement of g. It is shown there (p. 109) that for every $g \in L^1[0, 1]$,

$$\|g\|^{(\alpha)} = \inf \left\{ \frac{1}{\alpha} \|g_1\|_1 + \|g_2\|_{\infty} : g_1 \in L^1, \ g_2 \in L^{\infty}, \ g_1 + g_2 = g \right\}.$$

The dual space is $L^{\infty}[0, 1]$ with the norm $\|\phi\|_{(\alpha)} = \max\{\|\phi\|_1, \alpha \|\phi\|_{\infty}\} [1, p. 32]$. Our Theorem 1 can be proved using a classic result on best approximation [8, p. 18]. The proof, however, is not short.

REFERENCES

- 1. J. BERGH AND J. LÖFSTRÖM, "Interpolation Spaces, An Introduction," Springer-Verlag, Berlin/Heidelberg/New York, 1976.
- 2. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.

LAPIDOT AND LEWIS

- 3. B. R. KRIPKE, Best approximation with respect to nearby norms, Numer. Math. 6 (1964), 103-105.
- 4. B. R. KRIPKE AND T. J. RIVLIN, Approximation in the metric of $L^1(X, \mu)$, Trans. Amer. Math. Soc. 119 (1965), 101–122.
- A. PINKUS AND O. SHISHA, Variations on the Chebyshev and L^q theories of best approximation. J. Approx. Theory 35 (1982), 148–168.
- 6. J. R. RICE, "The Approximation of Functions," Vol. 1, Addison-Wesley, Reading, MA, 1964.
- 7. T. J. RIVLIN, "An Introduction to the Approximation of Functions," Blaisdell, Waltham, MA, 1969 (reprinted by Dover, New York).
- 8. I. SINGER, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, New York/Heidelberg/Berlin, 1970.