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A family of norms | g||'™), 0 <« < 1, which combine features of both the uniform
and the L! norms is defined. Best approximation of a continuous function from an
n-dimensional subspace is characterized and (in case of a 7-subspace) a uniqueness
theorem is proven. The family, as well as the best approximation, is continuous in
o. In particular, when « tends to zero or one, we get the uniform or the L' case,
respectively.  © 1991 Academic Press, Inc.

1. INTRODUCTION

The uniform (L%, Chebyshev) norm max,.,.; |g(x)| measures the
largest deviation of the continuous function g from 0, whereas the L' norm
{0 18(x)| dx measures the average deviation. We use a class of norms,
denoted by ||g||® where 0<a <1, which combine features of these two
classical norms. Our | g||', defined in Section 2, measures the average of
the largest function values |g(x)|. As a— 17, |g|| converges to the L'
norm of g; as a—0%, [g|® converges to the uniform norm of g.
Corresponding results hold for best approximations to a given continuous
function f.

Our main result is an L'-type characterization theorem for best
approximation. Interestingly, we obtain uniqueness of the best approxima-
tion from a Chebyshev system by an argument which uses both L' and
uniform norm techniques.

Our work is somewhat in the spirit of [5]. There L7-type gauges were
introduced and a theory developed for ¢ =1 reminiscent of best uniform
approximation.
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2. PRELIMINARIES AND AN EXAMPLE

For each a with 0 <a <1 we define the peak norm or a-norm ||| on
the space C[0, 1] of real continuous functions g on [0, 1] by

m(4)=a

1
gl == sup [ gl

where the supremum is taken over all subsets 4 of [0, 1] with (Lebesgue}
measure m(4)=a. It is easy to verify that [«]® is in fact a norm on
C[0, 17. Of course when a=1, ||g||' is equal to the L' norm of g. For
each 0<a<1 our [|+]|® is topologically equivalent to the L' norm on
C[0, 1], since o |lg) < fp lg(x) dx<|ig)™. Also [+|® is a monotone
norm; ie., if [g(x)] <|f(x), 0<x< 1, then [g|™ <{f[I*). Finally note
that |« [/’ is not strictly convex; this is easily shown by an example.
More generally, for 1< g < oo we could define

1 ia
lel=| 5 sup | 1gt]

m(A)y=a

and obtain results similar to the case ¢ =1 studied in this paper.

Our first result concerns existence and structure of sets A’ for which
m(4’'y=a and (1/a) {4 Ig| =gl . Intuitively, 4’ is a set of x-values (of
measure «) corresponding to the largest |g(x)| values. Throughout this
paper we will denote the set difference of two sets by 4\ B= A n (B°) and
the symmetric difference by 4 A B=(A\B) U (B\ 4).

We use the following notations: Let g be a continuous function on
[0, 17. For 4 real, set

A(g)={xe[0, 1] |g(x)| = h}
ho(g, @) =inf{h : m(4,(g)) <o}

and

An(g)={xe[0,17:[g(x)| > ho}.

Lemma 1. Let O<a<l and g be a continuous function on {0, 17,
Ay =A4(g), ho=ho(g, «), and A, = A} (g). Then
(1) m(Ay)<a<<m(d,)

(2) There exists a set A'<[0,1] with m{(A')=u and (1/a) |, |gl =
(L/o) SUPmay—o § 4 181 =11 ™. In fact any set A" with A}, < A’ < A, and
m(A'y=a is such that (1/a) | 4 g =1 g|®.
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(3) Conversely, if A'<[0,1] and m(A")=a and if (1/2) |4 |gl=
gl then (except possibly for a set of measure 0) A S A'S A,

The proof of Lemma 1 is straightforward and will be omitted.

We define a norming set for g (using ||*|®) to be any set A’ with
m(A')=a and A;, = A' < A, (where hy, A, , A, are defined in the state-
ment of Lemma 1). If m(4;)=a or if m(4,,) =« then g has a unique (up
to a set of measure 0) norming set. If m(A4,]) <a<m(A4,) then g does not
have a unique norming set, since any set of the form 4"= A, U E, where
Ec{xe[0,1]:|g(x)|=h} and m(E)=u—m(A}), is a norming set for
g. Possible nonuniqueness of norming sets is a complicating feature in the
analysis below. Finally, note that for each norming set 4’ for g,

ho= inf [g(x)|.
xeA

This follows from the continuity of g.

For the linearly independent continuous functions u, ..., 4, on [0, 1], set
U=span{u, .., u,} = the n-dimensional subspace spanned by u,, .., u,.
Then u* in U is a best peak norm (or best a-norm) approximation to f in
C[0, 1] from U if | f —u*[|™ < | f —ul|' for all  in U. Existence of a best
peak norm approximation to f from the finite dimensional subspace U is
guaranteed by a standard existence theorem, cf. 2, p. 20].

We next present an example.

ExampLe. Let O<a<1. We seek a best a-norm approximation to
f(x)=(x—1/2)% 0<x< 1, using ¢, + ¢,x. Motivated by symmetry we try

A

=[(a—2)*+a*]/32.

Notice 4'=[0, /410 [1/2—a/4, 1/2+a/4]ul—a/4,1] is a norming
set for f(x)— (c¥ + c¥x).

It follows from Theorem 1 in Section 3 below that u*(x)=c} + c¥x is in
fact a best a-norm approximation.

Notice Iim, o« [f(x)—(cF+c¥x)]=(x—1/2)>—1/8, a multiple of
the Chebyshev polynomial of the first kind T,(¢)=22—1, —1<<1,
transformed to O0<x<1 by the change of variable 1= —1+2x.
Also lim,_ - [f(x)—(c¥+c¥x)]1=(x—1/2)*—1/16, a multiple of the
Chebyshev polynomial of the second kind U,(t)=4>—1, —1<1<1,
transformed to 0 < x < 1. These results are instances of Theorem 4 below.
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3. MAIN RESULTS

The next theorem is our main result. When a=1 the criterion (3.1)
reduces to that of a well-known characterization theorem for L'
approximation on [0, 1], cf. [4, p. 104].

THEOREM 1 (L'-Type Characterization Theorem). Letr O<a<l1, f,
Uy, ..., u, continuous on [0, 1], and U=span{u,, .., u,}. Let u* € U and set
Z={xe[0,17: f(x)—u*(x)=0}, the zero set of f —u*. Then u* is a best
peak norm approximation to f from U if and only if for each u in U there
exists a norming set A(u) for f—u* such that

j“u)usgn(f—-u*)< 1. (3.1)

ZnAu)

Proof. The proof is presented in Section 5.

Remarks. (1) It can be shown that Theorem | remains valid if
absolute value signs are placed around the integral on the left-hand side of
(3.1). Hence if hy>0 then Zn A(u)=¢ and (3.1) becomes

f usen(f —u*)=0
Au

(2) 1If u* is a best L' approximation to f on a norming set A for
f—u* (ie, if f,, |f—u* <jA | f—u} for all u in U) then u* is a best peak
norm approximation to f. If f—u™* has a unique (up to a set of measure
0) norming set A4, then the converse is true: if #* is a best peak norm
approximation to f then u* is a best L' approximation to f on 4. These
facts follow from Theorem 1 and from a characterization theorem for L'
approximation on the set 4.

(3) (a) I w* is a best o-norm approximation to f with
ho=1nf,_ , | f(x)—u*(x)| =0 (4 is a norming set) then u* is also a best
B-approximation to f for each f with a<f<1. This is a direct conse-
quence of Theorem 1 since now f{x)—u*(x)=0 for all x in [0, 11\ 4. This
can also be shown without using Theorem 1 as follows. For any » in U,

R e T s A R S T

(b) If u* is a best L' approximation to f on [0,1] and if
m{x:|f(x)—u*(x)]| >0} <a<1 then it does not follow that »* is a best
a-norm approximation to f. This is easily seen by example.
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Our next theorem gives intuitively appealing “uniform approximation
type” properties of a best peak norm approximation. First, the set
{uy, .., u,} of continuous functions on [0, 1] is a Chebyshev system on
[0, 1] if each linear combination ¢,u, + --- + ¢,u, has fewer than n zeros
in [0, 1] unless ¢, =0, .., ¢, =0.

THEOREM 2. Let f be continuous on [0, 1] and {u,, .., u,} a Chebyshev
system of continuous functions on [0, 1]. Let 0 <a <1 and let u* be a best
a-norm approximation to f from U=span{u,, .., u,}. Set

Ay=A4,(f —u*)
ho= inf 1/(x) —u*(u)l,

where A is any norming set for f—u*. If ho>0 then there are closed sets
AN LAY with m=n+ 1 such that:

(1) Ah0= Uty A,
(2) AV<APD< ... <A™ and, in fact, there exists d>0 such that
min AtV —max 49 >d i=1,.,m—1.

(3) sgn AUtV = —sgn AV, i=1, .., m—1, where

+1 if  f(x)—u*(x)>h, for all x in AV

AD = .
Sgn {—1 if flx)—u*(x)< —hg for all x in AP,

(4) There exists a subsequence A™, A, . AU of 4D A
with m 2n+1, sgn A%V = —sgn AD j=1,.,m' —1, and m(4?)>0,
j=1,.,m.

(5) Set t;=min AV, i=2,..,m, and s,=max AY, i=1,.,m—1.
Then

(@) [f()—u*(t)l=ho, i=2,..m |f(s)—u*(s)=he, i=1,..,
m—1.

(b) u* is the unique best uniform approximation on the finite point
set {Sy, tay Sy bue 1y Sm—15 L} and also on any finite point set of the
Jorm (Sy, ro, ey ¥py_ 15 by} Where rie {t;, 8}, i=2,.,m—1.

Proof. By the uniform continuity of f—u* on [0, 1], there exists d>0
such that [(f —u*)(x)— (f —u*)(¥)| <2hy if |x— y] <d Partition [0, 1]
into a finite number of subintervals I of length <d. Label I as a +sub-
interval if f(x)—u*(x)=h, for some x in I, as a —subinterval if
J(x)—u*(x) < —hg for some x in I (I may be neither + nor — but it can-
not be both + and —.) Starting at the left end of [0, 1], form 4V by
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intersecting A, with successive subintervals I; stop when a subinterval of
opposite sign is encountered. Then from 4 using subintervals of opposite
sign from 4. Continue until all subintervals have been used. Then each
AW is closed (since 4,, is closed) and (1), (2), (3) are clear, except for
m>=n+1. We prove this by contradiction; assume m<n. If m=1, then
sgn(f — u*) does not change on A,. There exists x in U with u(x)> 0 for
all x in [0, 1] (because {u,, .., u,} is a Chebyshev system). Using either «
or —u we obtain a contradiction from A(u)= A4, and Theorem 1
(Z~ A{u)=¢ there since hy>0). If 2<m<n, let xy, .., x,_, be points
satisfying

AV < x, < AUTD, i=1,.,m—1

Then there exists u in U which changes sign precisely at x4, ..., x,,_ ;. Again
using either u or —u we obtain a contradiction from Theorem 1. Hence
mzn+ 1, Part (4) is proved similarly.

Part (5(a)) follows from the closedness of 47 and the continuity of
f—u*. Part (5(b)) is an immediate consequence of the alternation theorem
and uniqueness theorem for best uniform approximation on a finite point
set, ¢f. [2, p.75; 6, Chap.3]. |

In the example of Section 2, 4" = [0, a/4],
AO = [1/2—aj4, 1/2+ /4], AD =[1—a/s, 1].

The next theorem generalizes a classical uniqueness theorem of Jackson
for L' approximation.

THEOREM 3 (Uniqueness). Let O<a<1, f continuous on [0, 1],
{uy, ., u,} a Chebyshev system of continuous functions on [0,1], and

U=span{u,, ..,u,}. Then the best a-norm approximation to { from U is
unique.

Proof. Assume p, and p, are two different best ¢-norm approximations

to f from U and set po=(p,+ p,)/2. Let 4 be 2 norming set for /' — p,.
Then

1 1
1 =pol =2 | 1 =pol=_ | /= (pi+p2)2]

1 1
<z -nbes] -2
<O1f =l @+ 1 = pal @2 (32)

Thus p, is also a best a-norm approximation to f, both < are =, and 4
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is (up to a set of measure 0) a norming set for f— p, and for f— p,. The
fact that inequality in (3.2) is equality implies

I(f(x)=pi(x) + (fC) = 2N =1/ (x) =N + [ f () —pa(x)] - (3.3)

almost everywhere on 4. Now for j=0,1,2 define 4,»=A4,0(f—p)),
B = ho(f— pys ), Ajp= A5 f —p))

Let A’ be a subset of 4 of measure o« on which (3.3) holds and which is
a norming set for f— p, and for f— p,. Then

1= inf |£(x) = po(x)]
=4 inf [1f(x)=pi ()] + () = pa(x)(]
>3 Linf 1) = py(x)] + inf 1f(x)=ps(x)]]
=4 [hV+hP]. (34)

If A =0, then A =0 =h{ also and so p,(x)= f(x) = p,(x) for all x in
[0,1]\A’. This is impossible since {u,,..,u,} is a Chebyshev system.
Hence h{" >0. Let t,, s; be defined as in part (5) of Theorem 2, with p,
replacing u* there and A"’ replacing 4, there. Since A ,:(T)n cA'c4 ,:EO), every
interval of the form (s, s, + ¢) with ¢ > 0 contains points y not in A ;@). Let
Y1, Y2, .. be a sequence of such points with lim;_, ., y,=s,. Then since
|f(9;) = p:(,)l = h we have

| f(s1) = p1(s)] :jlinolo lf(y_]) - i)l <h{. (3.5)

Similarly, |f(s;) = pa(s;)| <A

From (3.4) one of AV, h? is <hY; say h{P <h$. Then from (3.5),
Lf(s))—p (s <hP <h®. In a similar way to that in which (3.5) was
obtained, we can get |f(s;))—p,(s)I<hA<hY, i=2,.,m—1, and
Lf(2,) —pi(2,)] <hY <hYY. Hence using the uniqueness part of (5(b)) of
Theorem 2 we see p,=p,. Also p,=2p,— p,=p,. This contradiction
completes the proof. ||

4. CoNTINUOUS DEPENDENCE ON o

In this section we consider the dependence on « of a best a-norm
approximation to f. We first state a lemma whose proof is straightforward
and will be omitted.
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LEmMMA 2. Let g be a continuous function on [0, 17].

(1) Ifo<p<a<l, then gl <Igl” < (/B) g™
(2) IfO<a<], thenlim; ., gl = g™
() (@) lims. - |g]? =[5 lg(x)| dx.

(b) limg_ o+ lgll” =maxoc . <y lg(x)l.

THEOREM 4. Let f be continuous on [0,17, {uy,..,u,} a Chebyshev
system of continuous functions on [0,1], and U=span{u,, .., u,}. Let p,
(pg) be the unique best a-norm (f-norm) approximation to f from U.

(1) IFO<fB<a<l then

L =Pl <= pall @ <N f = ppl P <N S~ pzi(ﬁ’<5t|f Pall®.

(2) IfO0<a<], thenlimg ,, py=p,.
3) (a) ﬁmﬁ—»rl’ﬂzpl-

(b) limg_ o+ psg=py, the best uniform approximation to f on
10,17 from U.

Proof. The first inequality of (1) follows from the definition of p,, the
second inequality from Lemma 2, the third inequality from the definition of
pg, and the fourth inequality from Lemma 2. Parts (2), (3) are immediate
consequence of the following (special case of a) result from [3].

Let X be a normed linear space with norm || « ||, ¥ a finite dimensional
subspace of X, fin X, and | « |z, k=1, 2, .., norms on X which satisfy
lim, , . llgll.=1gll for each g in X. If v* is the unique best approximation
to f from V using || « | and if v, is a best approximation to f from V using
I o |l then lim, , v, =v* }

5. PROOF OF THE CHARACTERIZATION THEOREM

In this section we present the proof of our main resuit. Qur proof is pat-
terned on the proof of the characterization theorem for L' approximation
in [7, p.67].

Proof of Theorem 1. (<=) Letide U and let A(4 —u*) be a norming set
for f— u* such that (3.1) holds with u =4 — u*. Then

640/67/2-5
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ol f—u |

- fmurl=[ (f—ur) sea(f—u)
A —u*) Ad —u*)

- (f=i) sga(f—w)+ [ —(a—u*) sga(f—~u*)
A — u*) A(d — u*)

<| (f —u*) sgn(f—u*) + a—u* by (3.1)
Al —u*\Z A(d—u*)Z

<| =il + | li—f] since u*=fon Z
Al — u*\Z Ai—u*) Z

[ ir—ar<ans—ag®.
Al —u*)

Thus u* is a best a-norm approximation to f from U.

(=) We give a proof by contradiction. Let #* in U be a best o-norm
approximation to f from U and assume there exists » in U such that

L usgn(f—wk)—jzm1 ul >0 (5.1)

for every norming set 4 for f—u* We can scale « so that

max |u(x)] =1.

O0sxxl1

Set A ={xe[0,1]:]f(x)—u*(x)|>ho}. Recall (from Section 2)
m(An) <a<m(A4,). The proof will be accomplished by four assertions.

1. There exists a> 0 such that

f usgn(f—u*)—J lul >a (5.2)
A ZNA
Jor every norming set A for f—u*.

Proof of 1. If m(A;;)=a or if a=m(A4,) then there is a unique
norming set 4 (up to a set of measure 0) and so (5.2) follows from (5.1).
Now consider m(A,;) <o« <m(A4,). Each norming set 4 can be written
A=Ay VE, where E, is a subset of A, \A;={xe[0,1]:
| f(x) —u*(x)| = ho} with m(E ) =a—m(A,}) (see Section 2).
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Case 1. hy>0. Then Zn A=¢ and (5.2) becomes

j wsgn(f—u*)>a (53)

for every norming set 4 for f— u*. To show this, define

N,={xeA,\A} 1u(x)sgn(f —u*)(x) <1}
to=sup{t:m(N)<a—m(4,)}
N, ={xed,\A;, 1u(x)sgn(f—u*)(x) <t}

Then the infinum of [, usgn(f—u*) is attained on a norming set
A=A;; UNyUN, where N, is any subset of N, \N, of measure

m(N ) =a—m(A;)—m(Ny). Since u(x) sgn(f —u*}{x)=1, on N AN,
{4 u sgn(f—u*) is the same for all such N ,; this establishes (5.3).

Case 2. ho=0. Here

J,usen(f—uy=[ =] wsen(f—uwr)=[ jul

Zn A§ \Ag

The first integral on the right hand side is independent of 4. As an Case 1
we can show inf [—f avag 4[] s attained by a norming set 4 for f—u*.
This completes the proof of 1. ]

2. There exists an open set G of real numbers such that A, <G and an
open set B such that Z< B< G, m(B\Z) < a/4 and

j usgn(f-u*)—j u| > = (5.4)
A\B AnB 2
whenever A;; < A< Gn[0,1] and m(A)=a.

Proof of 2. If hy>0 then Z = ¢ and we can take B=¢. Then 2 follows
from 1. If h;=0 then A,=[0,1] and 2 follows from 1 and the two
inequalities

f ] <J [ +2 and Jp usgn(f —u*) <4
AnB Anz 4 AnB

4

(Tasusgn(f—u*) =i plul > [qusgn(f—u*)—{4.pusgn(f—u*)—
{inz lul—a/d=a—a/d—a/d=a/2). |

3. There exists 84> 0 such that if |8] <8, and if ug=u*+ u and if 4
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is a norming set for Ji —ugy, then A S G and there exists A such that A =
AS(GN[0,1]), m(A)=a, m(A A A)<a/8,

]L usgn(f—u*)—fﬂ usgn(f—u*)
A\B A\RB

<m(A A /i)<§ (5.5)

and

'fm Jul *jm lul

The proof of 3 is straightforward and will be omitted.

<m(A A ,2)<-;3. (5.6)

4. There exist 6, >0 such that for 0< 6 <9, and uy=u* + éu we have
ILf —uoll® < |.f — u*| . (This contradicts the assumption that u* is a best
a-norm approximation to f from U and completes the proof of Theorem 1.)

Proof of 4. Let A" =[G\B] [0, 1]. Then there exists M > 0 such that
[f(x)—u*(x)| =M for all x in A”. (If hy=0 then G224, =[0,1] and
A"=GnB°Nn[0,1]1=8B°Nn[0,1] is closed. Since |f(x)—u*(x)|>0 on
A", then inf, _ .. |f(x) —u*(x)| >0. If 4> 0 then |f(x)—u*(x)| = ho/2 for
x in G). Then for 0 < < M we have, for u,=u* + du, that sgn(f —u*)=
sgn(f—uy) on A",

Let 6, =min{d,, M}, let 0<3<J,, let 4 be a norming set for f— u,,
and let A be given by 2. Then

@ 1S =uol = 1/~ ol
= [, w1l
=[] ) sn(s—uo)
=[,  mwl [ () sen(s—u)
=[] (=) sea(s—u)

—5J usgn(f —u*)
A\B
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<[, Vw1

iy “N usgn(f — u*)—g] by (5.5),

<[ w1

a a a
—5U%B|u|—§+§—§] by (5.6),

S A N PR A B IR B

BN

<ol f—u*|®  since the second integrand is <0

(since & |ul = |—oul = |(f —uo)— (f —u*)| = |f —upl — |f —u*[). This
completes the proof of 4. |I

Remark. 1In his report the referee commented that the a-norm had been
discussed in [1], defined by [g|™ =(1/a) {5 |g*(¢)| dt where g* is a
decreasing rearrangement of g. It is shown there (p. 109) that for every
geL'[0, 1],

(1 .
%lgtl(“)=mf{; gl + g0l s g€ L, g€ L%, g4 +gz=g}-

The dual space is L=[0, 1] with the norm ||¢] ,, =max{[¢ll,, « |4l .} [L,
p.32]. Our Theorem 1 can be proved using a classic result on best
approximation [8, p. 18]. The proof, however, is not short.
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